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ABSTRACT 

Heat transfer from a cylinder placed on the vertical centre-line of a square enclosure partly filled with a 
porous medium that is saturated with a fluid has been numerically studied. The cylinder is buried in the 
porous medium. The horizontal upper surface of the porous medium is separated from the rest of the 
enclosure by a horizontal impermeable barrier that is assumed to offer negligible resistance to heat transfer. 
The gap between the barrier and the top of the enclosure is filled with the same fluid as that with which the 
porous medium is saturated. The surface of the cylinder is at a uniform high temperature. The bottom and 
sides of the enclosure are assumed to be adiabatic while the horizontal upper surface of the enclosure is 
assumed to be kept at a uniform low temperature. The natural convective flows that occur in the porous 
medium and in the fluid layer above the barrier have been assumed to be steady, laminar, two-dimensional 
and symmetrical about the vertical centre-line of the enclosure. Fluid properties have been assumed constant 
except for the density change with temperature which gives rise to the buoyancy forces. The governing 
equations have been expressed in dimensionless form and solved using a finite element procedure. Results 
have been obtained for a Prandtl number of 0.7 for a wide range of the governing parameters. The main aim 
of the study was to determine how the mean heat transfer rate from the cylinder is affected by the size of the 
fluid gap at the top of the enclosure. The effect of this gap size has been related to changes in the flow pattern 
in the porous and fluid regions. 
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NOMENCLATURE 
c = Specific heat S' = Size of enclosure 
D' = Diameter of cylinder T = Dimensionless temperature 
Da = Darcy number T = Temperature 
H =H'/D' TH = Temperature of cylinder surface 
H' = Thickness of fluid layer Tc = Temperature of cold top wall 
g = Gravitational acceleration u' = Velocity component in x' direction 
K = Permeability of porous medium v' = Velocity component in y' direction 
k = Thermal conductivity W' = Width of enclosure 
kr = kp/kf x = Dimensionless x' co-ordinate 
L1 = L1/D' x' = Horizontal co-ordinate position 
L1 = Distance from bottom of enclosure to cylinder y = Dimensionless y' co-ordinate 

centre-line y' = Vertical co-ordinate position 
L2 = L' 2/D' β = Coefficient of thermal expansion 
L ' 2 = Distance from bottom of enclosure to cylinder p. = Density 

centre-line ψ = Dimensionless stream function 
Nu = mean Nusselt number for cylinder based on D' ψ' = Stream function 
n =n'/W' ω = Dimensionless vorticity 
n' = Co-ordinate measured normal to surface ω' = Vorticity 
Pr = Prandtl number 
p' = Pressure Subscripts 
Ra = Rayleigh number based on D' f = Fluid properties 
S = S'/D' p = Porous media properties 
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INTRODUCTION 

In some building service situations, a pipe carrying hot water passes through an enclosure formed 
by structural components of the building. Most of the sides of the enclosure so formed are usually 
effectively adiabatic but one surface may be exposed to the external ambient environment and, as 
a result, will be at a low temperature. In such situations, the enclosure is often partly filled with 
insulation to reduce the heat transfer rate from the pipe. A typical although idealized such 
situation has been considered in the present study, this being shown schematically in Figure 1. 
Thus, flow in a square enclosure has been considered in the present study. The bottom and sides 
of this enclosure are assumed to be adiabatic while the upper surface of the enclosure is assumed 
to be at a uniform low temperature T'C. A cylinder is buried in the saturated porous insulating 
material contained in the lower part of the enclosure, the upper surface of this porous medium 
being separated from the rest of the enclosure by a horizontal impermeable barrier that is assumed 
to offer negligible resistance to heat transfer. The surface of the cylinder has been assumed to be 
kept at a uniform high temperature, T'H. The natural convective flow that occurs in the porous 
medium and in the fluid layer above the barrier has been assumed to be two-dimensional and 
symmetrical about the vertical centre-line. 

The main aim of the present study was to determine how the heat transfer rate from the cylinder 
is affected by the size of the air gap for a given enclosure size. The results have application in 
situations where the heat transfer has to be reduced but cost considerations require that as little 
insulation material as possible be used. 

The flow and heat transfer in enclosures that are partly filled with a fluid and partly filled with 
a porous medium have previously been considered by a number of workers both for the case where 
there is no barrier between the layers and for the case where there is an impermeable barrier 
between the layers. Typical of these studies are those of Poulikakos and Bejan1, Lauriat and 
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Mesguich2, Beckermann et al.3, Arquis et al.4, Oosthuizen and Paul5-8, Tong and Subramanian9, 
Tong et al.10, Song and Viskanta11 and Naylor and Oosthuizen12. These studies were all 
essentially concerned with flow in rectangular enclosures with all or part of the walls heated or 
cooled. No studies appear to be available of heat transfer from bodies in an enclosure which is 
partly filled with a porous medium. 

GOVERNING EQUATIONS AND SOLUTION PROCEDURE 

It has been assumed that the flow is steady, laminar and two- dimensional and that fluid 
properties are constant except for the density change with temperature which gives rise to the 
buoyancy forces, this being treated using the Boussinesq approach. The usual Darcy 
assumptions have then been adopted in the porous layer, except that the viscous shear stress 
term, i.e. the Brinkman term, has been retained although the inertia term has been neglected. 
The flow has been assumed to be symmetrical about the vertical centre-line and only the 
solution for one half of the enclosure has been found, the solution domain, therefore, being as 
shown in Figure 2. In order to check whether the assumption of symmetry was valid, a limited 
number of calculations were undertaken in which the flow in the entire enclosure was 
considered. In all of these cases it was found that the flow was indeed symmetrical about the 
vertical centre-line of the enclosure. 

The solution has been obtained in terms of the stream function and vorticity defined, as usual, 
by: 
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The prime (') denotes a dimensional quantity. In the porous layer, the velocity is, of course, the 
superficial or Darcian mean velocity. 

The following dimensionless variables have then been defined: 

where af= kf/ofcf and where the subscript f denotes fluid properties. The cold wall temperature, 
T'C, has been taken as the reference temperature. The co-ordinate system used is shown in 
Figure 2. 

In terms of these dimensionless variables, the governing equations for the porous medium are: 

Similarly, the dimensionless governing equations for the fluid layer are: 

In these equations, Ra is the Rayleigh number based on the cylinder diameter and defined as usual 
by: 

The boundary conditions on the solution are: on all walls i.e. on BC, EF, FH and HA in Figure 2: 

On BC in Figure 2 : 
T = l 

On EF in Figure 2: 
T = 0 

On FH and AH in Figure 2: 
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On AB and CE in Figure 2: 

where n is the co-ordinate measured normal to the wall surface considered. 
On the impermeable partition between the porous and fluid layers, i.e. on DG in Figure 2, 

which, by assumption, offers no resistance to heat resistance to heat transfer, the following 
conditions apply: 

where the subscripts i and i + 1 refer to conditions on the two sides of the partition. 
The above dimensionless equations, subject to the boundary conditions, have been solved 

using a Galerkin based finite element procedure, the non-linear finite-element equations being 
solved using an iterative procedure. The solutions for the porous medium and fluid layers were 
obtained simultaneously using the matching conditions across the impermeable barrier. Nodal 
points were selected to lie along the barrier in both the porous medium and the fluid regions so 
that the elements were either entirely in the porous medium or entirely in the plain fluid. The 
numerical procedure adopted has previously been successfully used to study many enclosure flow 
problems involving either pure fluids or porous media or both. 

Extensive grid independency testing was undertaken, solutions for the same set of parameters 
for between approximately 1,500 and 3,500 elements being obtained for a number of parameter 
sets. Very little dependency of the mean Nusselt number on the number of elements was found 
over this range of elements. For example, for one typical set of parameters, mean Nusselt numbers 
of between 1.50 and 1.48 were found over this range of numbers of elements. The results 
presented in the figures discussed below were all obtained using approximately 2,500 elements 
and with this number of elements the difference between the calculated Nusselt number and the 
value deduced from the grid-dependency results for an infinite number of elements was always 
less than 1 per cent. 

No indication of the existence of multiple solutions was found for the range of parameters 
covered in the present study. 

RESULTS AND DISCUSSION 

The solution has the following parameters: 
• the Rayleigh number, Ra; 
• the Darcy number, Da; 
• the Prandtl number, Pr; 
• the dimensionless size of the enclosure S; 
• the dimensionless vertical position of the cylinder, L1; 
• the dimensionless size of the fluid layer, H; 
• the conductivity ratio, kr; 
• the viscosity ratio. 
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Results have only been obtained for air, i.e. for a Prandtl number of 0.7. The viscosity ratio has 
been taken as 1 which appears, on the basis of available experimental results, to be a reasonably 
good assumption. With the Prandtl number fixed and the viscosity ratio taken as 1, the governing 
parameters reduce to the Rayleigh number, the Darcy number, the conductivity ratio and the 
geometrical parameters. Rayleigh numbers of between 10,000 and 100,000, Darcy numbers of 
between 0.0002 and 0.02, conductivities ratios of between 1 and 3 and dimensionless enclosures 
sizes between 6 and 8 have been considered in the present study. It should be noted that the 
Rayleigh and Darcy numbers used here are based on the cylinder diameter not on the enclosure 
size. It should also perhaps be noted that common insulating materials have conductivity ratios of 
roughly between 1.3 and 2.0. 
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The main result considered here is the mean heat transfer rate from the cylinder. This mean heat 
transfer rate has been expressed in terms of a mean Nusselt number based on the cylinder 
diameter, D' and the overall temperature difference, (T'H-T'C). 

Typical variations of mean Nusselt number, Nu, with dimensionless fluid layer size, H, are 
shown in Figures 3 to 7. It will be seen that, in all cases, as H increases the mean Nusselt number 
initially decreases. It then passes through a minimum before rising sharply with further increase 
in H and then reaches a near constant value at larger H values. In all cases, then, there is an H value 
that gives a minimum heat transfer rate from the cylinder. The reason for this form of behaviour 
can be understood by considering the changes in the flow in the enclosure with changing H. 
Typical streamline and isotherm patterns for various values of H for fixed values of the other 
parameters are shown in Figure 8. It will be seen that at small values of H, there is no motion in 
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the fluid layer. However, the fluid layer is unstable, the barrier being at a higher temperature than 
the upper surface. At a critical value of H, therefore, motion develops in this fluid layer. Initially, 
this motion consists of two or three vortices but with increasing H it develops into a single vortex 
rotating in the same direction as the vortex in the porous medium. The conditions at which the 
motion begins in the fluid layer cannot be deduced from available results for flow in unstable fluid 
layers which assume that the upper and lower surfaces are at uniform temperatures. In the present 
case, the temperature of the barrier, which forms the lower boundary of the fluid layer, is not 
uniform and depends on the motion in the fluid layer. The rapidity of the growth of the fluid 
motion with increasing H can be seen by considering the results given in Figure 9. This shows 
streamline and isotherm patterns for H values of 0.46, 0.48, 0.5 and 0.6. for fixed values of the 
other parameters. The fluid flow will be seen to develop over a small range of H values and 
marked changes in the fluid flow pattern will be seen to occur with very small changes in H. Even 
when the fluid motion in the porous medium is very weak, i.e. when the Darcy number is small, 
large changes occur in the flow pattern in the fluid layer. This is illustrated by the results given in 
Figure 10. 

Returning to a consideration of the variation of Nusselt number with H, it follows from the 
discussion given above that at small values of H the only fluid motion is in the porous medium and 
that the fluid layer offers a relatively higher resistance to heat transfer than the porous layer. 
Increasing the thickness of the fluid layer then increases the the overall thermal resistance of the 
system leading to a decrease in the heat transfer rate. Furthermore, in most of the cases 
considered, the porous medium has a higher effective thermal conductivity than the fluid layer. 
When there is no motion in the fluid layer, this makes the thermal resistance of the fluid layer very 
much lower than that of the porous layer. This accentuates the decrease in mean heat transfer rate 
with increasing fluid layer thickness at small values of H. Once the motion starts in the fluid layer, 
however, the thermal resistance of the fluid layer decreases rapidly, leading to a decrease in the 
overall thermal resistance of the system and so leading to the observed increase in the mean heat 
transfer rate. Considering the results given in Figure 3, it will be seen that the value of H at which 
the minimum in the mean Nusselt number variation occurs increases with decreasing Rayleigh 
number, the variation being shown in Figure 11. It will further be seen that at the lowest Rayleigh 
number considered, when the motion in both the porous or fluid layers is very weak, the variation 
of Nusselt number with H is small. From Figure 4 it will be seen that the conductivity ratio has 
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little effect on the value of H at which the minimum Nusselt number occurs. Figure 5 shows the 
effect of Darcy number on the Nusselt number variation with H. The value of H at which the 
minimum Nusselt number occurs increases somewhat with decreasing Darcy number, the 
variation being shown in Figure 12. It will further be seen that at the smaller Darcy number 
considered, when there is relatively little motion in the porous medium layer, there is relatively 
little change in Nusselt number with H. This is because in this case for the range of H values 
considered the porous medium is the major source of thermal resistance and the changes in the 
flow in the fluid layer consequently have a weak effect on the heat transfer rate. Figure 6 
illustrates the effect of the dimensionless distance of the cylinder from the bottom of the enclosure 
on the Nusselt number variation with H. The effect will be seen to be relatively weak, the value of 
H at which the minimum Nusselt number occurs decreasing somewhat with increasing distance. 
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Last, Figure 7 illustrates the effect of changes in the dimensionless enclosure size on the variation 
of Nusselt number with H. The effect of S on the variation will also be seen to be relatively weak 
for the range of values considered. The value of H at which the minimum Nusselt number occurs 
will be seen to decrease somewhat with decreasing S. 

CONCLUSIONS 

In all cases considered, it has been found that there is a dimensionless fluid layer thickness that 
gives a minimum mean Nusselt number for a given situation. This minimum has been shown to 
arise because when the dimensionless fluid layer thickness is small, there is no motion in the fluid 
layer leading to a decrease in the mean heat transfer rate with increasing dimensionless fluid layer 
thickness. However, once the dimensionless fluid layer thickness reaches a certain critical size, 
motion rapidly develops in the fluid layer leading to an increase in the mean heat transfer rate with 
further increase in the dimensionless fluid layer thickness. These two effects together lead to the 
minimum in the Nusselt number variation. 

The effect of the various governing parameters on the value of the dimensionless fluid layer 
thickness at which the minimum Nusselt number occurs has been explored. 
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